
CONCEPTUAL	EXPLICATIONS	OF	THE	DESIGN	PROCESS		

This	content	is	intended	to	<ill	out	and	add	some	further	explanation	to	the	
design	process	adumbrated	in	Mind-Blowing	Kusudama	Origami.	First,	as	a	
caveat,	I	would	note	(as	others	have	before)	that	a	written	language	is	not	a	
very	compact	means	for	expressing	origami	concepts.	Therefore,	describing	
origami	geometry	in	language	tends	to	be	wordy	and	dif<icult	to	conceptualize,	
so	any	attempts	at	clarifying	the	design	process	described	in	Mind-Blowing	
Kusudama	Origami	will	have	natural	limitations.	I	have	attempted	to	keep	
mathematical	formulation	to	a	minimum	here,	focusing	rather	on	the	
conceptual	highlights.	Second,	this	theoretical	work	on	the	nature	of	2-fold	
rotationally	symmetric	origami	unit	design	from	square	sheets	of	paper	is	still	
in	its	nascent	stage,	and	is	thus	far	from	exhaustive.	As	with	all	of	the	work	I	
do	in	modular	origami,	my	intention	here	is	to	cultivate	the	creative	design	
process	in	myself	and	others,	and	to	expand	upon	these	themes	touched	upon	
in	Mind-Blowing	Kusudama	Origami.	Therefore,	feel	free	to	expand	or	revise	
any	of	the	concepts	here	for	yourself,	to	<ind	a	method	that	works	for	you.							

Q:	What	are	some	of	the	preliminary	constraints	which	are	applied	to	
this	modular	origami	design	process?		

A:	This	modular	origami	unit	design	process	1)	begins	with	a	square	piece	of	
paper	2)	is	constrained	to	units	whose	creases	possess	180-degree	rotational	
symmetry	around	a	central	point,	which	is	representative	of	the	origin	as	the	
intersection	of	the	baseline	and	the	ridgeline,	the	central	point	of	the	paper,	
and	the	midpoint	of	the	edge	of	a	polyhedron	which	the	units	are	modeling	3)	
contains	no	cuts	or	adhesives	4)	follows	the	rules	of	<lat	foldability	except	
where	such	<lat	foldability	con<licts	with	a)3D	embellishments	or	b)regions	of	
the	paper	that	will	remain	3D	during	the	assembly	process	and	5)	is	oriented	
towards	more	classical	kusudama	design	paradigms,	emphasizing	the	scope	of	
the	standard	“tab	and	pocket”	style	modules.	Therefore,	this	design	paradigm	
is	not	optimized	for	the	design	of	novel	methods	of	assembly,	non-polyhedral	
shapes	or	exotic	locking	mechanisms.					

Q:	What	is	a	Polygon	Base?			

A:	Kusudamas	traditionally	model	polyhedral	structures.	Every	self-enclosed		
polyhedral	 structure	 (that	 is,	 a	 structure	 with	 convex	 polyhedral	 symmetry	
containing	equal	length	edges	and	no	degenerate	polygonal	faces)	modeled	in	



an	origami	kusudama	has	speci<ied	regions	of	paper	from	the	starting	squares	
of	paper	of	each	folded	unit	which	show	on	the	interior	of	the	model	as	the	basic	
“shape”	of	the	unit,	that	is,	the	representative	region	of	a	singular	unit	which	
projects	a	tiling	onto	the	surface	of	a	maximal	volume	inscribed	sphere.	These	
represent	a)	the	2-fold	axial	projections	of	the	zonohedral	spherical	tiles	of	the	
polyhedral	 shape	 represented	 by	 the	 units	 (for	 example,	 the	 projection	 of	 a	
unit’s	 visible	 perimeter	 onto	 one	 of	 the	 rhombuses	 of	 a	 rhombic	
triacontahedron	in	the	case	of	an	icosahedral	assembly	modeling	the	edges	of	
an	icosahedron),	and	also	b)	the	uninterrupted	central	2-fold	polygonal	region	
of	the	paper	which	is	symmetrically	divided	by	the	Baseline	and	Ridgeline	of	
the	 unit.	 I	 refer	 to	 the	 latter	 as	 an	 Identity	 Polygon	 Base,	 because	 it	
fundamentally	constrains	the	central	design	of	the	unit	pattern,	and	the	former	
as	an	Augmented	Polygon	Base,	because	it	includes	the	entire	perimeter	of	the	
unit	 as	 viewed	 from	 inside	 of	 the	 model,	 and	 thus	 illustrates	 each	 unit’s	
contribution	to	the	completed	structure.	The	Identity	Base	is	quite	simply	the	
polygon	which	 lies	 at	 the	 center	 of	 the	 unit	 in	 the	 unfolded	 crease	 pattern.	
Kusudama	units	are	rarely	<lat	(as	in,	possessing	entirely	unfolded	Baselines	or	
Ridgelines),	so	genuine	orthogonal	projections	would	usually	be	distorted,	and	
unnecessarily	dif<icult	 to	 calculate	mathematically	 in	practice.	Therefore,	 the	
notion	 of	 projection	 here	 is	 strictly	 theoretical—in	 practice,	 the	 Augmented	
Polygon	Base	is	simply	the	perimeter	of	the	unit	as	you	would	visualize	it	if	you	
were	looking	outward	from	inside	of	the	unit.	In	all	cases,	the	crease	patterns	of	
both	types	of	Polygon	Bases	will	maintain	centrally	symmetric	point	re<lections	
about	the	origin	of	 the	Standard	Basis,	which	 includes	both	the	Baseline	and	
Ridgeline.	By	the	rules	of	<lat	foldability,	any	interior	polygon	base	angles	>180	
degrees	will	entail	that	those	angles	are	part	of	the	Augmented	Polygon	Base.	In	
other	words,	only	the	Augmented	Polygon	Base	can	possess	concave	angles.	In	
many	 units,	 the	 Identity	 and	 Augmented	 Polygon	 Bases	 are	 identical.	 An	
Identity	 Base	 can	 have	 a	 partially	 folded	 line	 traversing	 it,	 but	 cannot	 have	
overlapping	layers.	Thus,	some	Identity	Bases	are	“degenerate	digons,”	but	no	
Augmented	Bases	are	“degenerate	digons,”	because	some	polygon	bases	have	
layers	converging	on	the	baseline	on	the	underside	of	the	unit	(from	my	book,	
Tuscia	would	be	an	example	of	this).	This	is	not	to	say	that	the	Identity	Base	as	
visualized	 on	 the	 unfolded	 crease	 pattern	 is	 simply	 a	 line	 (although	 this	 is	
indeed	sometimes	the	case),	but	rather	that	in	a	completed	unit,	there	exists	no	
uninterrupted	region	of	paper	which	is	both	visible	and	constitutes	the	exterior	



contribution	of	each	unit	to	the	kusudama.	Polygon	Bases	constrain	the	range	
of	potential	designs	and	assemblies,	correlate	to	the	paper-area	ef<iciency	of	the	
unit,	 and	 constrain	 the	 range	 of	 reference	 creases	 for	 a	 kusudama	 unit	
representing	the	edges	of	a	polyhedron.			

Q:	If	a	tab	of	an	adjacent	unit	lies	on	top	of	a	polygon,	how	does	this	affect	
the	Augmented	Polygon	Base?			

A:	Tabs	which	appear	as	part	of	the	Augmented	Polygon	Base	can	sometimes	
<ill	in	negative	space	of	an	adjacent	unit’s	Augmented	Polygon	Base.	From	my	
book,	Carpathia	would	be	an	example	of	such	a	unit.	In	such	cases,	the	
Augmented	Polygonal	Base	can	visually	extend	into	the	2-fold	axial	space	of	
what	would	be	a	neighboring	zonohedral	spherical	tiling	region	from	the	
inscribed	sphere.	In	the	case	of	Carpathia,	the	model	appears	to	have	an	
irregular	octagonal	Augmented	Polygon	Base,	but	the	notches	on	the	pocket	
sides	of	the	unit	result	in	regions	of	the	tabs	of	an	adjacent	unit	which	cover	
the	notches.	Thus,	the	Augmented	Polygon	Base	in	this	model	is	partially	
constituted	by	what	would	traditionally	be	considered	part	of	the	tabs.			

Q:	How	does	the	Identity	Polygon	Base	relate	to	the	Augmented	Polygon	
Base?			

A:	The	entire	visual	area	of	the	unit	(as	in,	what	you	see	of	each	unit	on	a	
completed	assembly)	is	included	in	the	2-fold	projection,	but	the	Augmented	
Polygon	Base	is	the	region	of	the	unit	which	is	visible	from	the	interior	of	the	
construction,	the	paper	that	is	both	integral	to	the	structure	of	the	model	
(because	it	de<ines	the	perimeter	of	the	units)	and	that	which	is	not	
overlapping	any	other	units.	Every	polyhedron	used	for	kusudama	
construction	can	be	divided	into	rhombic	zonohedral	regions	aligning	with	the	
polyhedron’s	edges,	and	the	<lattened	projection	of	the	interior	of	the	edge	
unit	on	to	its	corresponding	rhombic	region	is	the	projection	of	the	Polygon	
Base.	If	this	is	composed	of	a	single	uninterrupted	region	of	paper	from	the	
original	starting	square,	the	Base	will	be	an	Identity	Base,	whereas,	if	this	
projected	area	includes	other	layers,	it	will	be	an	Augmented	Base.	The	
Identity	Base	in	a	unit	design	is	thus	a	subset	of	the	Augmented	Base,	which	is	
a	subset	of	the	unit	perimeter.		

Q:	How	does	the	Augmented	Polygon	Base	relate	to	the	perimeter	of	the	
folded	unit?		



A:	Expanding	from	the	Augmented	Polygon	Base,	the	perimeter	of	the	folded	
unit	includes	the	tabs	and	any	embellishments	which	project	outwards	to	form	
the	perimeter	of	the	folded	unit.	As	noted	on	page	13	of	Mind-Blowing	
Kusudama	Origami,	extrinsic	rotations	of	the	baseline	and	ridgeline	around	a	
unit	in	<ixed	orientation	can	utilize	the	full	perimeter	of	the	folded	unit.	This	
means	that	as	long	as	two	of	the	Polygon	Base’s	vertices	lie	on	the	Baseline,	
the	Baseline	or	Ridgeline	can	be	arbitrarily	rotated.	Also	note	that	unlike	the	
rotations	on	the	original	square	of	paper	which	had	four-fold	rotational	
symmetry,	extrinsic	rotations	on	the	perimeter	of	a	folded	unit	with	existing	2-
fold	symmetry	will	have	180	degrees	of	rotational	freedom	in	units	which	are	
not	re<lectionally	symmetrical	across	their	existing	ridgelines.						

Q:	What	are	the	Baselines	and	Ridgelines?	Are	they	arbitrarily	chosen?			

A:	A	square	piece	of	paper	is	here	de<ined	as	in	a	standard	orientation	when	
the	midpoints	of	the	sides	of	that	square	lie	on	the	x	and	y	axes	at	any	
arbitrarily	de<ined	scalar	value.	Put	otherwise,	a	square	of	paper	is	in	standard	
orientation	when	its	edges	are	horizonal	and	vertical	to	the	viewer.	The	
Baseline	and	Ridgeline	initially	lie	on	the	Standard	Basis	(in	R2)	which	divides	
the	paper	into	four	orthogonal	quadrants.	Thus,	the	x	and	y	axis	are	often	
referred	to	in	mathematics	as	the	Standard	Basis,	and	the	x	axis	here	is	
referred	to	as	the	Baseline,	while	the	y	axis	is	referred	to	as	the	Ridgeline.	
Distinguishing	between	intrinsic	and	extrinsic	rotations,	it	is	possible	to	keep	
the	paper	unmoved	and	rotate	the	coordinate	frame	of	reference	(the	Baseline	
and	Ridgeline)	up	to	90	degrees.	A	rotation	of	90	degrees	or	more	will	result	in	
the	Baseline	and	Ridgeline	reiterating	their	relationship	on	the	next	corner	
around	on	the	square	in	which	direction	the	frame	of	reference	was	rotated.	
By	de<inition,	the	Baseline	is	arbitrarily	chosen	as	the	standard	orientation	of	
the	unit,	just	as	the	notion	of	the	x-axis	as	horizontal	and	the	y-axis	as	vertical	
is	arbitrary.	By	the	conventions	used	in	my	book,	the	Baseline	is	the	standard	
folding	sequence’s	primarily	utilized	line	of	symmetry,	and	the	Baseline	will	
always	pass	through	two	vertices	of	the	Polygon	Base.	For	example,	in	the	
variation	of	Galicia,	the	unit’s	polygon	base	appears	as	a	rectangle,	but	is	
technically	a	hexagon,	since	the	long	edges	of	the	rectangle	are	interrupted	by	
the	Baseline	at	the	center	of	the	unit.					

Q:	Both	the	Baseline	and	Ridgeline	are	frequently	referenced,	as	well	as	
the	Standard	Basis:	what	is	the	difference	between	these	terms?		



A:	The	term	“Standard	Basis”	and	references	to	the	“Baseline	and	Ridgeline”	
are	interchangeable	in	this	context.	Standard	Basis	is	a	mathematical	term	
referring	to	vectors	which	are	identical	to	the	x	and	y	axes,	the	scaled	linear	
combination	of	which	are	capable	of	generating	all	real	vectors	in	R2.	As	noted	
in	Mind-Blowing	Kusudama	Origami,	the	Standard	Basis	divides	the	starting	
square	of	the	paper	into	four	equally	sized	and	shaped	regions	of	paper,	and	
within	≤2	of	these	regions,	all	unique	design	decisions	will	occur	in	radial,	
centrally	symmetric	kusudama	unit	designs.	The	two	lines	which	divide	the	
paper	into	four	regions	are	the	Baseline	and	Ridgeline.	These	two	lines	are	
orthogonal/perpendicular	to	each	other.				

Q:	What	is	meant	by	the	concept	that	all	creative	design	decisions	take	
place	within	≤2	quadrants	of	the	Standard	Basis?		

A:	In	a	unit	which	is	2-fold	rotationally	symmetric,	all	unique	creases	will	exist	
within	≤2	quadrants	of	the	Standard	Basis.	In	most	2-fold	rotationally	
symmetric	edge	units,	two	adjacent	quadrants	(it	does	not	matter	which	two	
are	chosen,	so	long	as	they	are	adjacent)	will	contain	all	of	the	paper	within	
which	a	design	can	arbitrarily	add	new	folds.	This	pattern	of	folds	within	any	
two	adjacent	quadrants	is	then	copied	and	rotated	180	degrees	around	the	
central	point	of	the	paper	(the	origin	of	the	Standard	Basis),	which	<ills	in	the	
creases	for	the	other	two	quadrants.	For	example,	when	drawing	a	crease	
pattern	for	the	unit,	the	design	may	simply	draw	all	of	the	creases	in	any	two	
adjacent	quadrants	(which	together	constitute	50%	of	the	paper)	and	“copy	
and	paste”	this	pattern	(in	180-degree	rotational	symmetry)	to	the	other	half	
of	the	paper.	However,	in	the	case	of	units	which	are	both	re<lectionally	and	
rotationally	symmetric,	a	single	quadrant	of	the	paper	contains	all	the	unique	
creases	of	the	design.	The	Caria	kusudama	from	Mind-Blowing	Kusudama	
Origami	would	be	an	example	of	such	a	model.	In	the	case	of	such	models	the	
properties	of	both	the	“tab”	and	“pocket”	components	of	the	locking	
mechanisms	exist	in	all	four	quadrants,	and	the	unit’s	Polygon	Base	has	no	
reference	to	“handedness.”	The	designer	should	note	that	the	assembly	of	
units	which	are	both	re<lectionally	and	rotationally	symmetric	in	their	crease	
patterns	will	often	(but	not	always!)	loose	this	re<lectional	symmetry	in	the	
assembly	process.	In	other	words,	the	re<lectionally	symmetric	unit	may	
establish	a	handedness	in	the	assembly	process,	due	to	the	unique	functions	of	
identical	regions	of	paper	in	the	assembly	process.	Again,	Caria	is	an	example	



from	Mind-Blowing	Kusudama	Origami	of	a	model	where	the	unit’s	re<lectional	
symmetry	is	technically	lost	during	assembly	due	to	the	relationship	between	
adjacent	units.					

Q:	Are	the	Baseline	and	Ridgeline	constrained	by	the	Polygon	Base	or	do	
they	constrain	the	Polygon	Base?		

A:	The	answer	is	both:	<irst	the	lines	constrain	the	base	perimeter,	then	the	
base	perimeter	constrains	the	lines,	because	wherever	the	baseline	passes	
through	the	unit,	two	vertices	of	the	polygon	base	will	be	<ixed.	The	ridgeline	
will	always	be	<ixed	as	orthogonal	to	the	baseline.						

Q:	Can	the	Baseline	pass	through	vertices	of	an	Augmented	Polygon	Base	
where	there	exists	only	a	single	separate	layer	of	paper?		

A:	Yes,	it	can,	and	does	in	models	such	as	Aquitania	in	Mind-Blowing	Kusudama	
Origami.				

Q:	Are	the	tabs	of	a	unit	design	always	located	at	the	extremities	of	the	
original	starting	square?			

A:	No,	there	are	a	number	of	more	complex	designs	where	the	regions	of	the	
paper	designated	from	the	original	starting	square	for	the	tabs	and	the	
pockets	are	not	located	near	the	edges	of	the	paper,	but	such	designs	do	tend	
to	be	fairly	complex.	The	disadvantage	of	such	designs	is	that	they	take	longer	
to	fold,	and	they	tend	to	accumulate	more	layers	in	the	tab	and	pocket	regions,	
which	generally	reduces	the	precision	of	the	assembly.			

Q:	Does	the	Polygon	Base	include	the	negative	space	formed	by	
windowed	region?			

A:	Any	form	of	the	Polygon	Base	will	include	only	paper	which	is	part	of	the	
unit.	Augmented	Polygon	Bases	with	>4	sides	frequently	have	windowed	
regions,	which	include	any	intentional	openings	by	which	the	observer	may	
peer	into	and	through	the	model.	These	openings	project	as	negative	space	
unto	a	zonohedral	tile	corresponding	with	the	edge	unit.	Given	the	fact	that	a	
90-degree	rotation	of	the	Standard	Basis	may	be	unique	in	a	completed	unit	
(in	contrast	to	a	rotation	of	a	Standard	Basis	by	90	degrees	in	the	starting	
square,	which	will	not	be	unique),	a	regular	hexagon	Identity	Polygon	Base	
will	have	one	of	the	largest	potential	regions	of	negative	space.	Imagine	an	
animation	of	a	standard	star	kusudama	with	a	4-sided	Identity	Polygon	Base	



where	the	design	transitions	to	a	6-sided	Polygon	Base	and	begins	to	
incorporate	small	windows	at	each	stellated	vertex.	As	the	windows	expand,	
the	proportion	of	negative	space	expands	with	respect	to	the	Polygon	Base.	As	
the	windows	pass	the	1/4th	point	of	the	Ridgeline	(as	in,	halfway	to	the	center	
of	the	unit),	the	unit’s	base	may	be	rotated	90	degrees	and	scaled	to	<ill	the	
corresponding	rhombic	spherical	tile,	thus	reducing	the	resulting	negative	
space.					

Q:	How	do	the	reference	creases	relate	to	the	Polygon	Base?		

A:	The	vertices	are	points	on	the	surface	of	an	unfolded	square	of	paper	which	
de<ine	the	corners	of	either	form	of	the	Polygon	Base	(they	usually	de<ine	the	
Identity	Base	<irst,	as	this	is	much	simpler	to	design).	They	are	chosen	within	
the	design	space	by	the	intersection	of	reference	creases,	and	they	will	de<ine,	
either	directly	or	indirectly,	the	shape	and	the	size	of	either	Polygon	Base.	By	
de<inition,	≥2	distinct	creases	will	intersect	at	each	vertex	of	an	Identity	
Polygon	Base.	In	the	case	of	a	unique	Augmented	Polygon	Base,	two	or	more	
vertices	will	be	separated	from	the	Identity	Base	by	creases	which	do	not	
constitute	an	edge	in	the	perimeter	of	either	Base,	and	these	creases	may	be	
constrained	by	the	reference	creases.	Reference	creases	may	initially	establish	
a	rotational	orientation	of	the	Standard	Basis,	thus	constraining	the	
orientation	of	either	Polygon	Base.	Reference	creases	may	be	additive,	in	the	
sense	that	you	may	use	the	<irst	creases	you	make	on	a	square	to	create	a	pair	
of	new	creases,	and	use	the	new	creases	as	references	for	a	third	pair	of	
creases,	and	so	on.	In	practice,	keeping	the	number	of	reference	creases	to	a	
minimum	reduces	the	amount	of	time	required	to	fold	a	unit,	and	limits	the	
number	of	unused	creases	which	show	on	the	completed	model.					

Q:	How	are	the	initial	reference	creases	established?		

A:	There	exist	remarkably	few	initial	crease	possibilities	using	square	paper	
and	assuming	that	the	creases	are	referenced	and	hence	duplicatable.	All	
referenced	folding	sequences	beginning	from	a	square	will	fold	the	paper	in	
half,	either	joining	opposite	edges	or	opposite	vertices.	There	are	two	types	of	
rotations.	The	<irst	is	the	rotation	of	the	Standard	Basis,	while	the	second	is	
the	rotation	of	the	creases.	This	second	rotation	is	the	second	degree	of	
freedom	referenced	in	the	book,	which	establishes	the	location	of	the	points	
which	de<ine	the	size,	shape	and	orientation	of	the	polygon	that	forms	the	



perimeter	of	the	folded	unit,	with	respect	to	the	orientation	of	the	Standard	
Basis.	Creases	whose	angles	are	approximately	factors	of	90	when	measured	
in	degrees,	including	non-integer	values,	are	all	good	places	to	start,	since	they	
evenly	divide	the	corners	and	sides	of	the	starting	square	of	paper.	Amongst	
these,	90,	45,	22.5,	60,	30	and	15-degree	angles	are	most	commonly	used	in	
my	book,	and	in	general	in	kusudama	design,	because	they	are	the	easiest	
referenced,	and	these	are	descriptively	reducible	to	multiples	of	22.5	and	15	
degrees.	Multiples	of	22.5-degree	angles	divide	evenly	into	a	square	and	are	
easily	obtained	by	halving	the	appropriate	existing	angles	when	the	starting	
Standard	Basis	is	rotationally	oriented	to	one	of	the	same	multiples.	For	
example,	when	the	Baseline	is	rotated	22.5	degrees	in	either	direction,	the	
appropriate	references	to	join	any	corner	of	the	square	to	one	of	the	reference	
creases	needed	to	obtain	a	22.5-degree	rotated	Baseline	(see	the	<irst	steps	of	
the	Augusta	kusudama	for	an	example	of	these),	while	pivoting	around	the	
rotated	Baseline,	will	be	multiples	of	the	same	angles.	Finding	these	same	
22.5-degree	references	would	be	more	dif<icult	if	the	starting	Baseline	rotation	
was	30	degrees,	Likewise,	multiples	of	15-degree	angles	are	obtained	by	a	
combination	of	a	bisection	and	trisection	of	the	appropriate	corners,	of	either	
the	paper,	or	of	angles	between	the	edge	of	the	paper	and	a	fold,	or	between	
two	folds	whose	orientation	with	respect	to	each	other	at	the	point	of	their	
intersection	is	orthogonal.					

Q:	Once	the	initial	Standard	Basis	orientation	is	established,	how	might	
the	unit	design	process	proceed?		

A:	Once	an	initial	line	of	symmetry	is	established,	creases	which	intersect	
these	lines	of	symmetry	can	begin	to	constrain	the	magnitude	of	either	the	
baseline	or	ridgeline,	since	2	points	of	the	Polygon	Basis	will	lie	on	these	
intersections.	Each	pair	of	new	creases	will	exponentially	increase	the	
potential	for	folding	sequence	variation,	so	precisely	predicting	how	to	
proceed	becomes	in	practice	impossible.	However,	using	the	Huzita-Justin	
axioms	for	the	range	of	potential	referenced	folds,	the	initial	reference	creases	
which	contain	the	vertices	of	the	Polygon	Base	which	lie	on	either	the	Baseline	
or	Ridgeline	provide	a	range	of	options.	First,	the	designer	might	conceive	of	
the	Standard	Basis	in	terms	of	a	vector	<ield,	and	consider	the	range	of	
perpendicular	vectors	(as	in,	the	normal	vectors)	whose	bases	are	translated	
from	the	origin	to	some	point	on	an	existing	crease	line,	and	make	folds	along	



one	such	pair	of	lines	with	convenient	reference	points	lying	on	other	crease	
intersections,	other	crease	edges,	or	some	point(s)	on	the	perimeter	of	the	
square	of	paper.	Additional	reference	creases	running	across	the	paper	may	
also	function	to	partially	truncate	the	existing	Identity	Polygon	Base’s	
perimeter.	Second,	noting	the	resulting	right	angles	formed	by	creases	made	
along	vectors	perpendicular	to	the	initial	reference	creases,	the	designer	might	
consider	the	vectors	whose	interior	angles,	when	measured	in	degrees,	with	
respect	to	their	intersection	with	the	previous	reference	creases,	are	factors	of	
the	right	angles	formed	by	the	perpendicular	vector.	In	other	words,	the	right	
angles	which	are	formed	can	receive	angle	bisections,	trisections,	
tetrasections,	etc.	which	extend	to	the	edge	of	the	paper	in	either	direction,	or	
which	stop	upon	intersecting	at	least	two	other	creases.	In	the	case	of	Type	2	
irregular	units	(where	the	folds	respective	of	the	Standard	Basis	are	not	
“regular”	as	de<ined	above),	angular	subdivisions	may	be	more	arbitrary,	in	
that	any	set	of	folds	which	has	the	potential	of	maintaining	point-re<lection	
isometry	through	various	additional	folds	(consider	the	way	in	which	Raetia	
kusudama	from	Mind-Blowing	Kusudama	Origami	does	this)	may	be	suf<icient	
to	subdivide	the	newly	generated	right	angles.	Third,	at	least	some	of	the	
paper	will	in	most	units	be	speci<ically	allocated	for	locking	mechanisms.	
Consider	the	circle	packing	techniques	and	molecular	triangularization	
utilized	by	other	design	processes	for	point	generation	to	isolate	tab	and	
pocket	regions.	In	all	of	this,	many	of	the	folds	which	develop	the	various	
components	of	the	unit	might	in	practice	be	quite	simple	and	require	little	
genuine	preplanning.			

Color	change	embellishments	will	result	from	an	alteration	of	layers,	either	
through	the	utilization	of	a	speci<ic	base,	or	through	alterations	of	mountain	
and	valley	folds	around	the	perimeter	of	the	starting	square.	Point	
embellishment	can	be	formed	through	either	redundancies	in	the	locking	
mechanisms,	or	through	the	allocation	of	regions	of	the	paper	for	molecule	
development	(as	per	traditional	circle	packing	design	processes).	Indeed,	
many	of	the	design	algorithms	of	representative	origami	can	be	reapplied	to	
kusudama	unit	design,	provided	one	accommodates	the	speci<ic	design	
constraints	of	unit	design.					

For	additional	complexity	and	variation,	one	might	start	with	a	classic	base	
and	then	proceed	with	all	the	techniques	described	above.	For	example,	one	



might	simply	Blintz	the	starting	square	and	then	proceed,	treating	the	
resulting	smaller	square	as	they	would	have	treated	the	original	square.	The	
Shakespeare	kusudama	from	Mind-Blowing	Kusudama	Origami	utilizes	such	a	
technique.	However,	layers	can	quickly	accumulate	in	such	cases,	and	the	extra	
layers	of	paper	must	be	allocated	prudently	for	best	results.					

Q:	What	constraints	do	the	initial	reference	creases	impose,	in	terms	of	
the	unit’s	design?		

A:	The	reference	creases	will	either	directly	or	indirectly	de<ine	the	location	of	
the	points	which	de<ine	the	size,	shape	and	orientation	of	the	polygon	that	
forms	the	perimeter	of	the	folded	unit,	with	respect	to	the	orientation	of	the	
Standard	Basis.	The	orientation	can	only	change	re<lectionally,	which	is	to	say,	
trivially,	with	respect	to	the	Standard	Basis	(in	which	case	the	creases	<lip	in	
their	respective	orthogonal	quadrants)	due	to	the	constraint	that	≥2	points	of	
the	polygon	base	must	lie	on	the	Baseline.	In	other	words,	the	Polygon	Base	is	
not	rotationally	independent	from	the	standard	basis	in	2-fold	rotationally	
symmetric	edge	unit	design.	However,	the	Standard	Basis	can	be	reoriented	
upon	the	completion	of	the	unit.	Orientation	aside,	the	starting	reference	
creases	will	signi<icantly	in<luence	both	the	shape	and	size	of	the	Identity	
Polygon	Base.			

Q:	What	distinguishes	Adaptability	from	Alternate	Baseline	Assemblies?		

A:	Technically,	there	are	occasions	when	there	exists	no	difference	between	the	
two.	For	example,	the	assembly	of	a	unit	along	its	Ridgeline	is	identical	to	
assembling	a	unit	where	the	Baseline	is	orthogonal	to	its	original	orientation,	
which	is	a	90-degree	rotated	Baseline.	However,	Adaptability	highlights	only	
90-degree	Baseline	rotations	and	the	two	potential	orientations	of	the	unit:	
where	the	Baseline	is	oriented	as	a	valley	fold	from	the	position	of	the	
observer,	and	where	the	Baseline	is	oriented	as	a	mountain	fold	from	the	
perspective	of	the	observer.	These	are	delineated	as	“Adaptability”	because	
they	are	conceptually	(though	certainly	not	visually)	trivial	transformations,	
usually	obtained	through	minimal	effort,	either	through	reversing	the	
orientation	of	the	central	crease,	the	tabs,	and	the	locks,	or	through	folding	the	
Ridgeline,	which	can	be	obtained	by	joining	opposite	vertices	of	the	Baseline.		

Alternate	Baseline	Assemblies	utilize	a	central	line,	about	which	the	creases	of	
the	unit	have	2-fold	rotational	symmetry,	as	a	new	Baseline,	which	is	rotated	



with	respect	to	the	original	orientation	of	the	Baseline	in	the	completed	unit	
by	some	value	between	0	and	180	degrees.	Many	of	the	details	of	kusudama	
unit	design	follow	from	the	Adaptability	of	the	units.	For	example,	the	
magnitude	of	the	vectors	extending	from	the	vertices	of	the	Polygon	Base	
which	lie	on	the	Baseline	will	de<ine	the	coef<icient	difference	between	the	
maximum	and	minimum	diameters	of	the	completed	assembly	of	any	regular	
polyhedral	structure,	if	and	only	if	the	Adaptability	of	the	units	facilitates	
mountain	and	valley	orientations.			

Q:	Do	the	Baseline	and	Ridgeline	as	visualized	on	the	original	starting	
square	extend	to	the	edge	of	the	paper	in	the	completed	unit?	In	other	
words,	do	these	lines	maintain	the	same	magnitude	through	the	folding	
process?			

A:	In	some	units,	they	will	as	physically	folded	creases,	but	in	many	others	they	
will	not.	The	units	where	lines	constituting	the	Standard	Basis	extend	
uninterrupted	to	the	edge	of	the	paper	on	the	completed	unit	are	usually	fairly	
simple	and	paper	area-ef<icient	units.	“Uninterrupted”	here	means	that	no	
folded	crease	which	constitutes	part	of	the	<inal	crease	pattern	of	the	standard	
unit	passes	through	or	directly	intersects	either	a)	the	Ridgeline	or	b)	the	
Baseline,	in	such	a	way	that	more	than	a	single	layer	of	paper	exists	where	
these	lines	intersect	the	unit’s	perimeter.	From	my	experience,	the	initial	
symmetry	<ixing	the	rotation	of	the	Standard	Basis	with	respect	to	the	paper	is	
identical	to	the	<inal	orientation	in	the	case	of	such	units,	and	no	folded	lines	
from	the	completed	design	tend	to	intersect	the	ridgeline,	which	entails	that	
≥2	vertices	of	the	Identity	Polygon	Base	lie	on	the	perimeter	of	the	square.	By	
contrast,	in	many	unit	designs,	neither	the	Baseline	nor	Ridgeline	will	extend	
to	the	edge	of	the	paper	in	the	completed	unit.	This	is	also	usually	the	case	
when	the	rotational	symmetry	of	the	Standard	Basis	with	respect	to	the	
completed	unit	is	altered	in	order	to	construct	alternative	assemblies.	
However,	in	the	case	of	variations,	the	inverse	may	also	be	true:	the	creases	
forming	the	Baseline	and	Ridgeline	may	not	extend	uninterrupted	by	creases	
to	the	edge	of	the	starting	square,	but	altering	the	rotational	orientation	of	the	
Standard	Basis	for	variations	may	result	in	them	doing	so.	For	an	example	of	
this	in	Mind-Blowing	Kusudama	Origami,	consider	the	Susiana	kusudama.	In	
standard	units,	no	vertices	of	the	hexagonal	Polygon	Base	lie	on	the	perimeter	
of	the	paper	(this	is	quite	easily	illustrated	by	a	glance	at	the	crease	pattern).	



However,	in	the	Susiana	variant,	the	Polygon	Base	is	altered	when	the	
Standard	Basis	is	rotated,	and	this	results	in	a	more	paper	area-ef<icient	unit	
whose	ridgeline	extends	uninterrupted	to	the	perimeter	of	the	paper.	Some	
units	will	not	even	fold	the	Standard	Basis	creases,	although	they	still	have	
them	as	a	line	of	symmetry.	Consider	Ekaterina	Lukasheva’s	Paradigma	
Kusudama	for	an	example	of	this.			

Q:	What	is	meant	by	the	“handedness”	of	a	kusudama	unit?			

A:	Kusudama	units	which	possess	an	axis	of	rotational	symmetry	with	two	or	
more	sides	may	also	have	a	“handedness.”	The	unit	may	be	“right-handed”	or	
“left-handed,”	and	each	of	these	is	mathematically	referred	to	as	the	other’s	
enantiomorph.	The	handedness	of	the	unit	corresponds	to	re<lections	across	a	
central	axis.	Practically,	changing	from	one	handedness	to	another	would	
usually	involve	<lipping	all	of	the	creases	to	the	opposite	side	of	the	paper	
across	a	central	axis.	When	this	action	is	performed,	the	tabs	which	were	
allocated	from	paper	in	the	upper	left	and	lower	right	quadrant	would	be	
allocated	from	paper	in	the	upper	right	and	lower	left	quadrant,	and	the	
pockets	which	were	allocated	from	paper	in	the	upper	right	and	lower	left	
quadrant	would	be	allocated	from	paper	in	the	upper	left	and	lower	right	
quadrant.	The	visual	effect	of	such	transformations	is	almost	universally	
negligible,	but	they	illustrate	the	symmetry	of	the	units.	Also,	with	some	
folding	sequences,	making	creases	in	a	speci<ic	handedness	may	be	more	
comfortable	for	the	folder.											

Q:	How	many	different	types	of	pockets/tabs	are	possible?		

A:	Fundamentally,	in	pure	origami,	the	friction	between	two	or	more	pieces	of	
paper	holds	together	kusudamas	without	the	use	of	additional	materials	or	
adhesives.	The	range	of	the	potential	types	of	kusudama	assemblies	has	never	
been	exhaustively	enumerated,	but	from	my	experience	folding,	I	have	noted	
several	types.	Note	that	these	are	neither	mutually	exclusive	nor	collectively	
exhaustive.				

a)	Dihedral	overlaps:	Dihedral	overlap	locks	are	often	generated	through	
inside	reverse	folds.	Inside	reverse	fold	locks	are	constituted	by	a	pocket	
which	is	formed	by	an	inside	reverse	fold,	and	some	corresponding	tab	which	
is	inserted	between	the	upper	and	lower	layers	of	the	inside	reverse	fold.	This	
tab	may	or	may	not	fully	occupy	all	of	the	available	space	within	the	pocket	



region,	but	may	not	be	larger	than	the	available	space	within	the	pocket,	
unless	the	entirety	of	the	tab	is	purposefully	not	inserted	into	the	pocket.	
While	inside	reverse	folds	may	be	used	to	generate	many	of	the	pocket	types	
below,	in	this	context,	they	refer	speci<ically	to	locks	which	rely	on	the	tabs	of	
a	unit	suf<iciently	<illing	a	pocket	which	extends	beyond	a	Ridgeline,	Baseline,	
or	Polygon	Base	perimeter	crease	of	an	adjacent	unit,	and	utilizes	this	
extension	to	generate	suf<icient	friction	to	hold	adjacent	units	together	by	
utilizing	the	dihedral	angle	between	adjacent	planes	of	different	units	in	the	
completed	assembly.				

b)	Layered	slits:	These	types	of	pockets	are	created	through	a	gap	existing	
between	multiple	layers	of	paper.	These	layers	may	consist	of	multiple	regions	
of	the	paper	converging	upon	a	single	region	associated	with	a	pocket	in	a	
completed	unit,	or	may	be	the	product	of	the	back-and-forth	alternation	of	a	
single	layer	within	the	pocket	region.	In	the	case	of	such	units,	the	tab	is	
inserted	between	two	layers	of	the	slit	in	a	manner	similar	to	that	of	the	Inside	
reverse	folds	described	above.	Note	that	this	describes	a	unique	type	of	lock,	
rather	than	a	unique	locking	mechanism.	Several	of	the	other	locking	
mechanisms	may	be	used	to	hold	paper	within	a	layered	slit.			

c)	Wrap	arounds:	These	locks	often	invert	the	opening	of	the	pocket,	re<lecting	
it	across	a	line	of	symmetry	identical	to	the	edge	of	the	polygon	base	
corresponding	to	the	pocket	side	of	the	assembly.	Thus,	the	edge	of	the	pocket	
in	such	cases	is	closer	to	the	center	of	the	unit,	and	the	deepest	part	of	the	
pocket	is	closer	to	the	edge	of	the	unit.	They	traditionally	mountain	fold	the	
tab	around	and	wrap	it	into	a	pocket	layer	underneath,	often	relying	on	the	
tension	of	the	paper	trapped	between	the	outer	edge	of	the	opening	of	the	
pocket	and	the	edge	which	separates	the	tab	from	the	unit’s	Polygon	Base.	As	
an	example	from	Mind-Blowing	Kusudama	Origami,	consider	Valdoria,	which	
utilizes	several	locking	mechanisms,	including	a	wrap	around.		

d)	Fold	throughs:	These	locks	align	one	or	more	folds	of	adjacent	units	with	
each	other	in	such	a	way	that	one	or	more	folds	can	be	performed	through	two	
or	more	units	simultaneously,	thus	locking	them	together.	When	multiple	folds	
are	performed	to	hold	adjacent	units	together,	they	may	be	in	alternating	or	
identical	orientations	(as	in,	mountain	or	valley	folds),	and	may	be	performed	
in	a	speci<ic	or	non-speci<ic	order.	For	an	example	of	a	fold	through	lock	with	



multiple	folds	performed	in	a	speci<ic	order,	consider	the	Ridgeline	variant	of	
the	Aquitania	kusudama	from	Mind-Blowing	Kusudama	Origami.		

e)	Friction	locks:	While	all	kusudama	locks	of	pure	modular	origami	rely	on	
the	friction	of	the	paper,	friction	locks	speci<ically	refer	to	those	in	which	
strictly	the	tension	between	the	layers	of	the	paper	holds	the	tab	in	the	pocket.	
In	other	language,	the	surface	of	the	tab	and	pocket	regions	of	adjacent	units	
remain	planar,	(as	in,	no	folds	pass	through	either	the	tab	or	the	pocket	to	
alter	their	dihedral	angles	from	180	degrees,	and	no	curved,	non-planar	
surfaces	exist	in	the	tabs	or	pockets).	As	an	example	of	this	type	of	lock,	
consider	the	Aquileia	kusudama	from	Mind-Blowing	Kusudama	Origami.	Also,	
the	classic	Sonobe	unit	would	be	an	example	of	such	a	lock.		

f)	Capstone	assemblies:	These	less-common	types	of	locks	rely	upon	the	
tension	generated	by	the	relationship	between	the	placement	of	multiple	
pieces	of	paper	in	order	to	hold	the	whole	structure	together	in	situations	
where	the	lock	between	any	two	units	alone	would	be	insuf<icient	to	hold	
them	together.	Examples	of	models	which	utilize	this	type	of	lock	in	addition	
to	other	locking	mechanisms	from	Mind-Blowing	Kusudama	Origami	include	
Capstone	and	the	Zeta	Ridgeline	assembly.	The	classic	example	of	a	model	
which	relies	solely	on	this	locking	mechanism	is	Kenneth	Kawamura’s	
Butter<ly	Ball.		

g)	Paper	displacement/dispersion	locks:	These	locks	rely	on	separating	one	or	
more	layers	of	paper	of	adjacent	units,	and	positioning	these	sections	of	the	
units	in	such	a	way	with	respect	to	each	other	that	the	tension	between	them	
suf<iciently	holds	them	together.	Examples	of	locking	mechanisms	which	
utilize	such	techniques	in	this	category	might	include	Toshikazu	Kawasaki’s	
twist	locks	and	Ekaterina	Lukasheva’s	Paradigma	kusudama.	Note	that	these	
are	often	very	similar	to	Capstone	assemblies.		

Note	that	any	combination	of	the	above	locks	is	conceivable	in	multi-step	lock	
assemblies.									

Q:	How	does	the	Polygon	Base	relate	to	the	paper	area	efQiciency	of	the	
unit?		



A:	They	are	directly	proportional.	The	visual	reference	to	the	completed	unit	
often	used	as	a	silhouette	superimposed	upon	the	starting	square	of	paper	is	
in	most	case	identical	with	the	unit’s	Augmented	Polygon	Base.					

Q:	What	determines	the	shape	and	the	size	of	the	Polygon	Base?			

A:	Although	four	is	the	minimum	number	of	vertex	points	to	de<ine	a	
nondegenerate	Polygon	Base	edge	unit,	the	number	of	points	on	the	Polygon	
Base	without	the	aforementioned	regions	external	to	the	central	polygon	
rarely	exceeds	six	to	eight,	except	in	cases	where	concave	exterior	facets	are	
added	to	the	Augmented	Polygon	Base.	Augmented	Polygon	bases	with	
concave	facets	frequently	have	>8	sides.	Caria	would	be	an	example	of	this.	
Why	do	Identity	Polygon	Bases	rarely	exceed	8	vertices?	A	simpli<ied	answer	is	
that	additional	polygonal	sides	function	as	a	design	challenge:	as	more	sides	
are	added,	the	function	and	placement	of	those	sides	within	the	polyhedral	
structure	must	be	established.	Sometimes	additional	sides	will	have	an	
additional	set	of	corresponding	tabs	and	pockets,	which	assemble	separately	
from	the	rest	of	the	unit,	but	this	adds	complexity	to	the	design.	Likewise,	the	
addition	of	extra	polygonal	sides	in	an	Identity	Base	requires	additional	folds	
to	establish	the	reference	constraints	of	the	polygonal	vertices.	Perhaps	most	
importantly	is	that	the	starting	size	of	the	paper	is	assumed	as	a	<ixed	
parameter,	which	means	that	as	more	sides	are	added	to	the	Identity	Polygon	
Base	(which,	as	a	reminder,	must	be	convex	due	to	the	rules	of	<lat-foldability),	
the	base	will	take	up	a	greater	proportion	of	the	starting	square’s	available	
area,	or	alternatively,	the	sides	of	the	base	will	shrink	in	length,	resulting	in	the	
Identity	Base	being	scaled	down	with	respect	to	the	paper.	Since	pockets	and	
tabs	usually	correspond	to	one	or	more	sides	of	a	Polygon	Base,	this	means	the	
pockets	and	tabs	will	be	smaller,	and	thus	more	dif<icult	to	design	as	the	
number	of	sides	increase	(because	the	regions	of	paper	allocated	for	the	tabs	
and	pockets	will	usually	have	to	be	increasingly	isolated	regions	from	each	
other,	separated	from	other	regions	by	more	surrounding	paper)	and	to	
assemble	(because	the	locking	assembly	regions	of	the	paper	will	represent	a	
smaller	proportion	of	the	paper).	The	Augmented	Polygon	Base	can	include	a	
variety	of	concave	angles,	and	can	also	be	expanded	to	include	areas	of	the	
paper	that	are	separated	from	the	center	polygon	by	one	or	more	creases	
(which	are	in	the	reverse	orientation	of	the	perimeter	of	the	polygon	base)	in	a	
completed	model.	This	means	that	the	Augmented	Base	includes	fewer	



constraints,	but	the	design	process	for	Augmented	Bases	is	less	
straightforward.	Throughout	this	Q&A,	I	reference	“Polygon	Base”	generally,	or	
“Identity	Polygon	Base/Augmented	Polygon	Base”	as	deemed	appropriate.		

Q:	Why	does	any	Polygon	Base	constituting	an	edge	unit	which	is	
representative	of	the	edge	of	a	polyhedral	structure	need	to	have	an	even	
number	of	sides?			

A:	The	edge	unit	which	represents	the	entirety	of	an	edge	must	have	2-fold	
rotational	symmetry	in	order	to	model	symmetric	polyhedra.	No	polygons	
with	an	odd	number	of	sides	have	2-fold	rotational	symmetry.	However,	any	
two	odd	numbers	added	together	yield	an	even	number,	so	it	is	entirely	
conceivable	that	units	whose	Polygon	Bases	have	an	odd	number	of	sides	can	
be	assembled	back-to-back	to	constitute	a	single	“macro	unit,”	which	then	has	
2-fold	symmetry.	Also,	some	units	have	an	even	number	of	sides,	but	do	not	
have	2-fold	rotational	symmetry.	None	of	these	types	of	unit	are	diagrammed	
in	Mind-Blowing	Kusudama	Origami,	but	many	such	designs	exist	elsewhere.							

Q:	Do	all	kusudamas	model	regular	polyhedra?		

A:	No,	but	most	do.	Non-regular	compositions	usually	involve	more	than	one	
type	of	unit.			

Q:	Does	the	range	of	modelable	polyhedra	(that	is,	the	3D	structures	
which	are	capable	of	being	assembled	out	of	kusudama	units)	include	
constructions	with	more	than	one	edge	length?			

A:	The	edge	of	the	polyhedron	corresponds	to	the	Baseline	of	the	unit.	If	the	
polyhedron	includes	more	than	one	edge	length,	the	Baselines	will	have	to	
scale	proportionally.	Since	kusudamas	are	traditionally	composed	of	a	single	
type	of	unit	(with	the	exception	that	many	kusudamas	include	separately	
folded	additional	inserts	and	embellishments	which	are	added	to	the	
composition),	they	will	have	a	Baseline	of	a	single	length,	and	thus	will	not	be	
capable	of	modeling	polyhedral	structures	with	more	than	one	edge	length.	
Polyhedra	which	are	capable	of	modi<ication	to	have	equal	length	edges	are	in	
theory	capable	of	being	modeled	using	kusudama	units,	but	the	limits	on	the	
assembly	of	any	given	unit	design	will	depend	upon	other	factors	of	the	unit	
design	as	highlighted	in	the	Adaptability	section	of	each	unit.				



Q:	Does	the	Baseline	of	the	unit	need	to	lie	directly	on	the	edge	of	the	
underlying	polyhedral	assembly	structure?				

A:	No,	not	in	all	cases.	Units	with	an	expanded	Augmented	Polygon	Base	often	
include	sections	of	the	paper	which	displace	the	Baselines	away	from	each	
other	in	a	manner	that	they	will	no	longer	align	with	the	underlying	rotational	
orientation	of	the	edges	with	respect	to	each	other	in	the	polyhedron.	In	many	
cases,	windows	which	form	around	the	vertices	of	the	Baseline	do	not	result	in	
the	Baselines	being	rotated	off	of	their	underlying	polyhedron.	In	these	cases,	
the	Baseline	is	a	proportional	scalar	multiple	of	the	edge	of	the	underlying	
polyhedron	(as	in,	the	Baseline	will	be	some	fraction	of	the	length	of	the	edge	
in	the	underlying	polyhedron	edge,	and	will	move	in	an	identical	direction	to	
that	edge).	However,	in	the	case	of	nearly	all	closed	kusudamas	which	possess	
no	windowed	regions,	and	which	model	regular	polyhedra,	the	Baselines	will	
line	up	exactly	with	an	underlying	polyhedral	symmetry.		

Q:	What	is	the	range	of	potential	rotations?		

A:	The	<irst	type	of	potential	rotation	occurs	when	both	the	Polygon	Base	and	
the	Baseline/Ridgeline	(where	the	latter	is	referred	to	as	the	Standard	Basis)	
are	rotated	together	so	that	their	orientation	with	respect	to	each	other	is	
<ixed.	The	second	type	occurs	when	the	Polygon	Base	is	rotated	with	respect	to	
the	paper,	whilst	the	Standard	Basis	is	<ixed.	The	third	type	occurs	when	the	
Standard	Basis	rotates	with	respect	to	the	paper,	while	the	Polygon	Basis	
remains	<ixed.	Finally,	the	Standard	Basis	may	be	rotated	in	a	completed	unit	
to	align	with	regions	of	the	paper	beyond	the	Polygon	Base.	This	may	be	
equivalent	to	the	rotation	of	the	Polygon	Base	and	the	Standard	Basis	
independent	of	each	other	with	respect	to	the	paper.	Note	also	that	all	
rotations	may	be	performed	in	either	a	clockwise	or	counterclockwise	
direction.					

Q:	What	is	meant	by	“irregular	unit,”	and	“irregularization?”			

A:	For	the	sake	of	conceptual	simplicity,	Mind-Blowing	Kusudama	Origami	
classi<ies	the	angles	of	the	creases	within	a	kusudama	unit	that	are	multiples	
of	15	and	22.5	degrees	as	“regular.”	This	is	because	these	angles	are	easily	
obtained	factors	of	90	and	180	degrees,	which,	as	a	reminder,	represent	the	
interior	angles	of	the	corners	of	the	squares	and	the	angles	formed	around	any	
point	placed	along	the	edges	of	the	square.	Given	that	there	exist	two	potential	



degrees	of	rotational	freedom,	as	well	as	the	potential	for	a	vast	variety	of	2-
fold	symmetric	irregular	polygons	which	may	constitute	the	Polygon	Bases,	
several	forms	of	“irregular	units”	are	possible.	First,	one	should	note	that	
irregular	units	are	not	intrinsically	correlated	to	complexity,	as	many	
“irregular	units”	are	quite	simple,	(the	Monarchy	Star	from	Mind-Blowing	
Kusudama	Origami	would	be	an	example	of	such	a	unit),	and	many	“regular”	
units	can	be	extremely	complex	(consider	units	folded	with	a	box	pleated	base,	
or	consider	some	of	the	more	complicated	15-degree	derivative	crease	pattern	
units	from	Mind-Blowing	Kusudama	Origami).	Regarding	the	differing	types	of	
irregular	units,	the	<irst	type	possesses	a	regular	Identity	Polygon	Base,	here	
de<ined	simply	as	a	region	of	the	paper	which	contains	a	regular	polygon.		This	
base	is	then	rotated	in	its	orientation	with	respect	to	the	paper,	resulting	in	a	
set	of	creases	which	are	irregular	with	respect	to	the	paper	and	initial	
reference	creases	(which	rely	on	the	initial	symmetry	of	the	paper).	A	second	
type	of	irregular	unit	is	one	in	which	the	creases	forming	the	polygon	basis	are	
irregular	(as	de<ined	above)	respective	of	the	Baseline	and	Ridgeline,	
regardless	of	the	orientation	of	these	lines	with	respect	to	the	paper.	This	
results	in	an	irregular	Polygon	Base.	A	third	type	of	units	combine	both	of	
these	irregularities	together,	which	results	in	an	irregular	Polygon	Base	
oriented	at	an	irregular	rotation	with	respect	to	the	paper.	Note	that	some	
crease	patterns	combine	both	an	irregular	angled	Polygon	Base	with	an	
irregular	rotation	to	generate	a	set	of	reference	creases	which,	as	a	result	of	
the	two	distinct	“irregularizations”	cancelling	each	other	out,	are	regular	with	
respect	to	the	paper.	Irregularization	in	my	book	often	refers	to	processes	
within	the	unit	design	sequence	which	harness	the	potential	of	such	units.			

Q:	What	is	the	purpose	of	designing	irregular	crease	patterns?		

A:	There	is	no	express	purpose	for	using	irregular	crease	patterns.	Utilizing	
irregular	creases	simply	removes	the	constraints	of	regular	angles	and	opens	
up	a	wider	array	of	options.				

Q:	How	does	the	size	of	the	unit	correlate	to	the	size	of	the	completed	
kusudama?		

A:	The	Baseline	magnitude	in	conjunction	with	the	polyhedron	which	the	units	
are	modeling	establishes	the	approximate	diameter	of	the	completed	
kusudama.	It	is	quite	easily	demonstrated	that	changing	the	orientation	of	the	



units’	Baselines	from	valley	to	mountain	orientation	will	not	alter	the	
diameter	of	the	sphere	inscribed	by	the	Baselines	of	the	units,	and	thus	a	
mountain	orientation	will	generally	have	a	smaller	diameter.			

Q:	How	might	this	design	process	be	succinctly	summed	up?			

A:	Consider	in	advance	the	type	of	base	desired,	and	how	standard	circle	
packing	might	establish	the	vertices	of	the	Polygon	Bases	within	the	
constraints	of	a	square.	Establish	a	set	of	reference	creases.	Use	these	to	
establish	a	line	of	symmetry.	Use	this	to	add	framing	creases,	add	angular	
subdivisions	between	creases,	bring	together	multiple	alternately	mountain	
and	valley-oriented	folds	to	converge	along	the	perimeter	of	the	Polygon	Base.	
Consider	how	existing	layering	patterns	could	be	either	used	or	modi<ied	in	
order	to	create	tab	and	pocket	regions	which	maintain	the	symmetry	
stipulations	described	above,	and	how	the	tab	regions	relate	to	the	pocket	
regions.	Finally,	consider	how	various	layers	can	contribute	to	the	exterior	
visual	effects	of	the	unit,	and	how	these	might	contribute	to	or	interfere	with	
the	assembly	process	of	the	units.						

		


